
The zref-check package
User manual

gusbrs

https://github.com/gusbrs/zref-check
https://www.ctan.org/pkg/zref-check

Version v0.3.7 – 2024-11-28

Abstract
zref-check provides an user interface for making LATEX cross-references flexibly,

while allowing to have them checked for consistency with the document structure
as typeset. Statements such as “above”, “on the next page”, “previously”, “as will
be discussed”, “on the previous chapter” and so on can be given to \zcheck in free-
form, and a set of “checks” can be specified to be run against a given label, which
will result in a warning at compilation time if any of these checks fail. \zctarget
and the zcregion environment are also defined as a means to easily set label targets
to arbitrary places in the text which can be referred to by \zcheck.

Contents
1 Introduction 2

2 Loading the package 3

3 Dependencies 3

4 User interface 3

5 Checks 4

6 Options 5

7 Limitations 6
7.1 Page number checks . 6
7.2 Within page checks . 6
7.3 Sectioning checks . 7

8 Change history 7

1

https://github.com/gusbrs/zref-check
https://www.ctan.org/pkg/zref-check

1 Introduction
The zref-check package provides an user interface for making LATEX cross-references ex-
ploiting document contextual information to enrich the way the reference can be ren-
dered, but at the same time ensuring the means that these cross-references can be done
consistently with the document structure.

The usual LATEX cross-reference is done by referring to a label, associated with one
or another document structural element, and this reference will typeset for you some
content based on the information which is stored in that label. \zcheck, the main user
command of zref-check, has a somewhat different concept. Instead of trying to provide
the text to be typeset based on the contextual information, \zcheck lets the user supply
an arbitrary text and specify one or more checks to be done on the label(s) being referred
to. If any of the checks fails, a warning is issued upon compilation, so that the user
can go back to that cross-reference and correct it as needed, without having to rely on
burdensome and error prone manual proof-reading.

This grants a much increased flexibility for the cross-reference text, which means in
practice that the writing style, the variety of expressions you may use for similar situa-
tions, does not need to be sacrificed for the convenience. \zcheck’s cross-references do
not need to “feel” automated to be consistently checked. Localization is also not an issue,
since the cross-reference text is provided directly by the user. Separating “typesetting”
from “checking” also means there is a lot of document context we can leverage for this
purpose (see Section 5).

A standard LATEX cross-reference is made to refer to specific numbered document
elements – chapters, sections, figures, tables, equations, etc. The cross-reference will
normally produce that number (which is the element’s “id”) and, eventually, its “type”
(the counter). We may also refer to the page that element occurs and even its “title” (in
which case, atypically, we may even get to refer to an unnumbered section, provided we
also implicitly supply by some means the “id”).

For references to these usual specific document elements, zref-check caters for a
particular kind of cross-reference which is common: relational statements based on them.
\zcheck can typeset and meaningfully check cross-references such as “above”, “on the
next page”, “on the facing page”, “on the previous section”, “later on this chapter” and
so on. After all, if your reference is being made on page 2 and refers to something on
the same page, “on this page” reads much better than “on page 2”. If you are writing
chapter 4, “on the previous chapter” sounds nicer than “on chapter 3”.

However, there is yet another kind of “looser” cross-reference we routinely do in
our documents. Expressions such as “previously”, “as mentioned before”, “as will be
discussed”, and so on, are a powerful discursive instrument, which enriches the text,
by offering hints to the arguments’ threads, without necessarily pressing them too hard
onto the reader. So, we might not want to say “on footnote 57, pag. 34”, but prefer
“previously”, not “on Section 3.4”, but rather “below”, or “later on”. Besides, we also
may refer to certain passages in the text in this way, rather than to numbered document
elements. And this kind of reference is not only hard to check and find, but also to
fix. After all, if you are making one such reference, you are taking that statement as a
premisse at the current point in the text. So, if that reference is missing, or relocated,
you may need to bring in the support to the premisse for your argument to close, rather
than just “adjust the reference text”. zref-check also provides support for this kind of
cross-reference, allowing for them to be consistently verified.

2

2 Loading the package
zref-check can be loaded with the usual:

\usepackage{zref-check}

The package does not accept load-time options, package options must be set using
\zrefchecksetup (see Section 4).

3 Dependencies
zref is required, of course, but in particular, its modules zref-user and zref-abspage are
loaded by default. ifdraft (from the oberdiek bundle) is also loaded by default. A LATEX
kernel later than 2023-11-01 is required as well. If hyperref is loaded and option hyperref
is given, zref-check makes use of it, but it does not load the package for you.

4 User interface

\zcheck[⟨checks/options⟩]{⟨labels⟩}{⟨text⟩}

Typesets ⟨text⟩, as given, while performing a list of ⟨checks⟩ on each of the ⟨labels⟩.
When hyperref support is enabled, ⟨text⟩ will be made a hyperlink to the first ⟨label⟩
in ⟨labels⟩. The starred version of the command does the same as the plain one, just
does not form a link. The ⟨options⟩ are (mostly) the same as those of the package,
and can be given to local effect. ⟨checks⟩ and ⟨options⟩ can be given side by side as
a comma separated list in the optional argument. ⟨labels⟩ is also a comma separated
list.

\zcheck

\zctarget{⟨label⟩}{⟨text⟩}

Typesets ⟨text⟩, as given, and places a pair of zlabels, one at the start of ⟨text⟩, using
⟨label⟩ as label name, another one (internal) at the end of ⟨text⟩.

\zctarget

\begin{zcregion}{⟨label⟩}
...

\end{zcregion}

An environment that does the same as \zctarget, for cases of longer stretches of text.

zcregion

\zrefchecksetup{⟨options⟩}

Sets zref-check’s options (see Section 6).
\zrefchecksetup

All user commands of zref-check have their {⟨label⟩} arguments protected for babel
active characters using zref’s \zref@wrapper@babel, so that we should have equivalent
support in that regard, as zref itself does. zref-check depends on zref, as the name entails,
which means it is able to work with zref labels, in general created by \zlabel, but also
with \zctarget and the zcregion environment provided by this package.

3

5 Checks
zref-check provides several “checks” to be used with \zcheck. The checks may be com-
bined in a \zcheck call, e.g. [close, after], or [thischap, before]. In this case,
each check in ⟨checks⟩ is performed against each of the ⟨labels⟩. This is done inde-
pendently for each check, which means, in practice, that the checks bear a logical AND
relation to the others. Whether the combination is meaningful, is up to the user. As is
the correspondence between the ⟨checks⟩ and the ⟨text⟩ in \zcheck.

The use of checks which perform “within the page” comparisons – namely above
and below and, through them, before and after – comes with some caveats you should
be acquainted with. Section 7.2 discusses their limitations and expands on the expected
workflow for their use to ensure reliable results.

Note that the naming convention of the checks adopts the perspective of \zcheck.
That is, the name of the check describes the position of the label being referred to, relative
to the \zcheck call being made. For example, the before check should issue no message
if \ztarget{mylabel}{...} occurs before \zcheck[before]{mylabel}{...}.

The available checks are the following:

thispage ⟨label⟩ occurs on the same page as \zcheck.

prevpage ⟨label⟩ occurs on the previous page relative to \zcheck.

nextpage ⟨label⟩ occurs on the next page relative to \zcheck.

otherpage ⟨label⟩ occurs on a page different from that of \zcheck, that is, it does not occur on
thispage.

pagegap There is a page gap between ⟨label⟩ and \zcheck, in other words, ⟨label⟩ does not
occur on thispage, prevpage or nextpage.

facing On a twoside document, both ⟨label⟩ and \zcheck fall onto a double spread, each on
one of the two facing pages.

above ⟨label⟩ and \zcheck are both on the same page, and ⟨label⟩ occurs “above” \zcheck.

below ⟨label⟩ and \zcheck are both on the same page, and ⟨label⟩ occurs “below” \zcheck.

pagesbefore ⟨label⟩ occurs on any page before the one of \zcheck.

ppbefore Convenience alias for pagesbefore.

pagesafter ⟨label⟩ occurs on any page after the one of \zcheck.

ppafter Convenience alias for pagesafter.

before Either above or pagesbefore.

after Either below or pagesafter.

thischap ⟨label⟩ occurs on the same chapter as \zcheck.

prevchap ⟨label⟩ occurs on the previous chapter relative to the one of \zcheck.

nextchap ⟨label⟩ occurs on the next chapter relative to the one of \zcheck.

chapsbefore ⟨label⟩ occurs on any chapter before the one of \zcheck.

4

chapsafter ⟨label⟩ occurs on any chapter after the one of \zcheck.

thissec ⟨label⟩ occurs on the same section as \zcheck.

prevsec ⟨label⟩ occurs on the previous section (of the same chapter) relative to the one of
\zcheck.

nextsec ⟨label⟩ occurs on the next section (of the same chapter) relative to the one of \zcheck.

secsbefore ⟨label⟩ occurs on any section (of the same chapter) before the one of \zcheck.

secsafter ⟨label⟩ occurs on any section (of the same chapter) after the one of \zcheck.

close ⟨label⟩ occurs within a page range from closerange pages before the one of \zcheck
to closerange pages after it (about the closerange option, see Section 6).

far Not close.

manual A check which always fails. Can be used to keep track of relations not covered by the
other regular checks.

6 Options
Options are a standard key=value comma separated list, and can be set globally either as
\usepackage[⟨options⟩] at load-time (see Section 2), or by means of \zrefchecksetup
(see Section 4) in the preamble. Most options can also be used with local effects, through
the optional argument of \zcheck.

Controls the use of hyperref by zref-check and takes values auto, true, false. Thehyperref
default value, auto, makes zref-check use hyperref if it is loaded, meaning \zcheck can
be hyperlinked to the first label in ⟨labels⟩. true does the same thing, but warns if
hyperref is not loaded (hyperref is never loaded for you). In either of these cases, if
hyperref is loaded, module zref-hyperref is also loaded by zref-check. false means not to
use hyperref regardless of its availability. This is a preamble only option, but \zcheck
provides granular control of hyperlinking by means of its starred version.

Sets the level of messages issued by \zcheck failed checks and takes values warn,msglevel
info, none, infoifdraft, warniffinal. The default value, warn, issues messages both
to the terminal and to the log file, info issues messages to the log file only, none sup-
presses all messages. infoifdraft corresponds to info if option draft is passed to
\documentclass, and to warn otherwise. warniffinal corresponds to warn if option
final is (explicitly) passed to \documentclass and info otherwise. ignore and ok are
provided as convenience aliases for msglevel=none for local use only. This option only
affects the messages related to the checks in \zcheck, not other messages or warnings of
the package. In particular, it does not affect warnings issued for undefined labels, which
just use \zref@refused and thus are the same as standard LATEX ones for this purpose.

Allows to control the messaging style for “within page checks”, and takes valuesonpage
labelseq, msg, labelseqifdraft, msgiffinal. The default, labelseq, uses the labels’
shipout sequence, as retrieved from the .aux file, to infer relative position within the page.
msg also uses the same method for checking relative position, but issues a (different)
message even if the check passes, to provide a simple workflow for robust checking of
“false negatives”, considering the label sequence is not fool proof (for details and workflow
recommendations, see Section 7.2). msg also issues its messages at the same level defined
in msglevel. labelseqifdraft corresponds to labelseq if option draft is passed to

5

\documentclass and to msg otherwise. msgiffinal corresponds to msg if option final
is (explicitly) passed to \documentclass, and to labelseq otherwise.

Defines the width of the range of pages, relative to the reference, that are consideredcloserange
“close” by the close check. Takes a positive integer as value, with default 5.

7 Limitations
There are three qualitatively different kinds of checks being used by \zcheck, according
to the source and reliability of the information they mobilize: page number checks, within
page checks, and sectioning checks.

7.1 Page number checks
Page number checks – thispage, prevpage, nextpage, pagesbefore, pagesafter,
facing – use the abspage property provided by the zref-abspage module. This is a
solid piece of information, on which we can rely upon. However, despite that, page num-
ber checks may still become ill-defined, if the ⟨text⟩ argument in \zcheck, when typeset,
crosses page boundaries, starting in one page, and finishing in another. The same can
happen with the text in \zctarget and the zcregion environment.

This is why the user commands of this package set a pair or labels around ⟨text⟩.
So, when checking \zcheck against a regular zlabel both the start and the end of the
⟨text⟩ are checked against the label, and the check fails if either of them fails. When
checking \zcheck against a \zctarget or a zcregion, both beginnings and ends are
checked against each other two by two, and if any of them fails, the check fails. In other
words, if a page number checks passes, we know that the entire ⟨text⟩ arguments pass
it.

This is a corner case (albeit relevant) which must be taken care of, and it is possible
to do so robustly. Hence, we can expect reliable results in these tests.

7.2 Within page checks
When both label and reference fall on the same page things become much trickier. This
is basically the case of the checks above and below (and, through them, before and
after). There is no equally reliable information (that I know of) as we have for the page
number checks for this, especially when floats come into play. Which, of course, is the
interesting case to handle.

To infer relative position of label and reference on the same page, zref-check uses
the labels’ shipout sequence, which is retrieved at load-time from the order in which the
labels occur in the .aux file. Indeed, zref writes labels to the .aux file at shipout (and,
hence, in shipout order), and needs to do so, because a number of its properties are only
available at that point.

However, even if this method will buy us a correct check for a regular float on a
regular page (which, to be fair, is a good result), it is not difficult do conceive situations
in which this sequence may not be meaningful, or even correct, for the case. A number of
cases which may do so are: two column documents, text wrapping, scaling, overlays, etc.
(I don’t know if those make the method fail, I just don’t know if they don’t). Therefore,
the labelseq should be taken as a proxy and not fully reliable, meaning that the user
should be watchful of its results.

6

For this reason, zref-check provides an easy way to do so, by allowing specific control
of the messaging style of the checks which do within page comparisons though the option
onpage. The concern is not really with false positives (getting a warning when it was
not due), but with false negatives (not getting a warning when it was due). Hence,
setting onpage to msg at a final typesetting stage (or just set it to labelseqifdraft or
msgiffinal if that’s part of your workflow) provides a way to easily identify all cases
of such checks (failing or passing), and double-check them. In case the test is passing
though, the message is different from that of a failing check, to quickly convey why you
are getting the message. This option can also be set at the local level, if the page in
question is known to be problematic, or just atypical.

7.3 Sectioning checks
The information used by sectioning checks is provided by means of dedicated counters
for chapters and sections, similarly as standard counters for them, but which are stepped
and reset regardless of whether these sectioning commands are numbered or not (that
is, starred or not). And this for two reasons. First, we don’t need the absolute counter
value to be able to make the kind of relative statement we want to do here. Second, this
allows us to have these checks work for numbered and unnumbered sectioning commands
without having to worry about how those are used within the document.

The caveat is that the package does this by hooking into \chapter and \section,
which poses two restrictions for the proper working of these checks. First, we are using
the new hook system for this, as provided by ltcmdhooks, which means a LATEX kernel
later than 2021-06-01 is required. Second, since we are hooking into \chapter and
\section, these checks presume these commands are being used by the document class
for this purpose (either directly, or internally as, for example, KOMA-Script’s \addchap
and \addsec do). If that’s not the case, additional setup may be needed for these checks
to work as expected.

8 Change history
A change log with relevant changes for each version, eventual upgrade instructions,
and upcoming changes, is maintained in the package’s repository, at https://github.
com/gusbrs/zref-check/blob/main/CHANGELOG.md. The change log is also distributed
with the package’s documentation through CTAN upon release so, most likely, texdoc
zref-check/changelog should provide easy local access to it. An archive of histori-
cal versions of the package is also kept at https://github.com/gusbrs/zref-check/
releases.

7

https://github.com/gusbrs/zref-check/blob/main/CHANGELOG.md
https://github.com/gusbrs/zref-check/blob/main/CHANGELOG.md
https://github.com/gusbrs/zref-check/releases
https://github.com/gusbrs/zref-check/releases

	Contents
	1 Introduction
	2 Loading the package
	3 Dependencies
	4 User interface
	5 Checks
	6 Options
	7 Limitations
	7.1 Page number checks
	7.2 Within page checks
	7.3 Sectioning checks

	8 Change history

