Original version: Mon Aug 16 19:23:15 2010.
Last update: Tue Aug 17 09:59:48 2010.
This Web page contains a lengthy test program, and its output, to give a demonstration of many of the important features of IEEE 754-2008 decimal floating-point arithmetic.
Unusual features of decimal arithmetic are normalization and quantization. The normal C-library printf() family provides no format items that reveal the quantization, so the ntos() MathCW library function family is used extensively for that purpose. Those functions convert a number to a string, and for decimal arithmetic, preserve quantization.
You can download a file with this test program here.
/*********************************************************************** Demonstrate some features of IEEE 754-2008 decimal floating-point arithmetic. Usage: dgcc decdemo.c -lmcw && ./a.out [16-Aug-2010] ***********************************************************************/ #include <stdio.h> #include <stdlib.h> #include <mathcw.h> #include <decfloat.h> #define PRINTF (void)printf void check_sizeof() { if (sizeof(decimal_long_long_double) == sizeof(decimal_long_double)) PRINTF("Warning: decimal_long_long_double and decimal_long_double " "are identical %d-byte types on this platform\n\n", sizeof(decimal_long_double)); } void eps_df(void) { decimal_float x; static const decimal_float ONE = 1.DF; static const decimal_float BASE = 1.e1DF; PRINTF("Demonstration of 32-bit machine-epsilon computation\n\n"); x = ONE; while ((ONE + x / BASE) > ONE) x /= BASE; PRINTF("Computed decimal_float machine epsilon = %.7..3Hg\n", x); PRINTF("\n\n"); } void eps_dd(void) { decimal_double x; static const decimal_double ONE = 1.DD; static const decimal_double BASE = 1.e1DD; PRINTF("Demonstration of 64-bit machine-epsilon computation\n\n"); x = ONE; while ((ONE + x / BASE) > ONE) x /= BASE; PRINTF("Computed decimal_double machine epsilon = %.16..3DDg\n", x); PRINTF("\n\n"); } void eps_dl(void) { decimal_long_double x; static const decimal_long_double ONE = 1.DL; static const decimal_long_double BASE = 1.e1DL; PRINTF("Demonstration of 128-bit machine-epsilon computation\n\n"); x = ONE; while ((ONE + x / BASE) > ONE) x /= BASE; PRINTF("Computed decimal_long_double machine epsilon = %.34..3DLg\n", x); PRINTF("\n\n"); } void eps_dll(void) { decimal_long_long_double x; static const decimal_long_long_double ONE = 1.DL; static const decimal_long_long_double BASE = 1.e1DL; PRINTF("Demonstration of 256-bit machine-epsilon computation\n\n"); check_sizeof(); x = ONE; while ((ONE + x / BASE) > ONE) x /= BASE; PRINTF("Computed decimal_long_long_double machine epsilon = %.70..3DLLg\n", x); PRINTF("\n\n"); } void limits_df(void) { PRINTF("Decimal 32-bit floating-point limits\n\n"); PRINTF("DEC_FLT_DEN = %.7..3Hg\n", DEC_FLT_DEN); PRINTF("DEC_FLT_EPSILON = %.7..3Hg\n", DEC_FLT_EPSILON); PRINTF("DEC_FLT_MANT_DIG = %d\n", DEC_FLT_MANT_DIG); PRINTF("DEC_FLT_MAX = %.7..3Hg\n", DEC_FLT_MAX); PRINTF("DEC_FLT_MAX_EXP = %d\n", DEC_FLT_MAX_EXP); PRINTF("DEC_FLT_MIN = %.7..3Hg\n", DEC_FLT_MIN); PRINTF("DEC_FLT_MIN_EXP = %d\n", DEC_FLT_MIN_EXP); PRINTF("\n\n"); } void limits_dd(void) { PRINTF("Decimal 64-bit floating-point limits\n\n"); PRINTF("DEC_DBL_DEN = %.16..3DDg\n", DEC_DBL_DEN); PRINTF("DEC_DBL_EPSILON = %.16..3DDg\n", DEC_DBL_EPSILON); PRINTF("DEC_DBL_MANT_DIG = %d\n", DEC_DBL_MANT_DIG); PRINTF("DEC_DBL_MAX = %.16..3DDg\n", DEC_DBL_MAX); PRINTF("DEC_DBL_MAX_EXP = %d\n", DEC_DBL_MAX_EXP); PRINTF("DEC_DBL_MIN = %.16..3DDg\n", DEC_DBL_MIN); PRINTF("DEC_DBL_MIN_EXP = %d\n", DEC_DBL_MIN_EXP); PRINTF("\n\n"); } void limits_dl(void) { PRINTF("Decimal 128-bit floating-point limits\n\n"); PRINTF("DEC_LDBL_DEN = %.34..3DLg\n", DEC_LDBL_DEN); PRINTF("DEC_LDBL_EPSILON = %.34..3DLg\n", DEC_LDBL_EPSILON); PRINTF("DEC_LDBL_MANT_DIG = %d\n", DEC_LDBL_MANT_DIG); PRINTF("DEC_LDBL_MAX = %.34..3DLg\n", DEC_LDBL_MAX); PRINTF("DEC_LDBL_MAX_EXP = %d\n", DEC_LDBL_MAX_EXP); PRINTF("DEC_LDBL_MIN = %.34..3DLg\n", DEC_LDBL_MIN); PRINTF("DEC_LDBL_MIN_EXP = %d\n", DEC_LDBL_MIN_EXP); PRINTF("\n\n"); } void limits_dll(void) { PRINTF("Decimal 256-bit floating-point limits\n\n"); check_sizeof(); PRINTF("DEC_LLDBL_DEN = %.70..3DLLg\n", DEC_LLDBL_DEN); PRINTF("DEC_LLDBL_EPSILON = %.70..3DLLg\n", DEC_LLDBL_EPSILON); PRINTF("DEC_LLDBL_MANT_DIG = %d\n", DEC_LLDBL_MANT_DIG); PRINTF("DEC_LLDBL_MAX = %.70..3DLLg\n", DEC_LLDBL_MAX); PRINTF("DEC_LLDBL_MAX_EXP = %d\n", DEC_LLDBL_MAX_EXP); PRINTF("DEC_LLDBL_MIN = %.70..3DLLg\n", DEC_LLDBL_MIN); PRINTF("DEC_LLDBL_MIN_EXP = %d\n", DEC_LLDBL_MIN_EXP); PRINTF("\n\n"); } void math_df(void) { PRINTF("Demonstration of selected decimal 32-bit function values\n\n"); PRINTF("cbrtdf (22.DF) = % .7..3Hg\n", cbrtdf(22.DF)); PRINTF("elledf (0.2DF) = % .7..3Hg\n", elledf(0.2DF)); PRINTF("erfcdf (22.DF) = % .7..3Hg\n", erfcdf(22.DF)); PRINTF("pgammadf(10, 22.DF) = % .7..3Hg\n", pgammadf(10, 22.DF)); PRINTF("psidf (22.DF) = % .7..3Hg\n", psidf(22.DF)); PRINTF("sbj0df (22.DF) = % .7..3Hg\n", sbj0df(22.DF)); PRINTF("sindf (22.DF) = % .7..3Hg\n", sindf(22.DF)); PRINTF("sqrtdf (22.DF) = % .7..3Hg\n", sqrtdf(22.DF)); PRINTF("tgammadf(22.DF) = % .7..3Hg\n", tgammadf(22.DF)); PRINTF("\n\n"); } void math_dd(void) { PRINTF("Demonstration of selected decimal 64-bit function values\n\n"); PRINTF("cbrtd (22.DD) = % .16..3DDg\n", cbrtd(22.DD)); PRINTF("elled (0.2DD) = % .16..3DDg\n", elled(0.2DD)); PRINTF("erfcd (22.DD) = % .16..3DDg\n", erfcd(22.DD)); PRINTF("pgammad (10, 22.DD) = % .16..3DDg\n", pgammad(10, 22.DD)); PRINTF("psid (22.0F) = % .16..3DDg\n", psid(22.DD)); PRINTF("sbj0d (22.DD) = % .16..3DDg\n", sbj0d(22.DD)); PRINTF("sind (22.DD) = % .16..3DDg\n", sind(22.DD)); PRINTF("sqrtd (22.DD) = % .16..3DDg\n", sqrtd(22.DD)); PRINTF("tgammad (22.DD) = % .16..3DDg\n", tgammad(22.DD)); PRINTF("\n\n"); } void math_dl(void) { PRINTF("Demonstration of selected decimal 128-bit function values\n\n"); PRINTF("cbrtdl (22.DL) = % .34..3DLg\n", cbrtdl(22.DL)); PRINTF("elledl (0.2DL) = % .34..3DLg\n", elledl(0.2DL)); PRINTF("erfcdl (22.DL) = % .34..3DLg\n", erfcdl(22.DL)); PRINTF("pgammadl(10, 22.DL) = % .34..3DLg\n", pgammadl(10, 22.DL)); PRINTF("psidl (22.0F) = % .34..3DLg\n", psidl(22.DL)); PRINTF("sbj0dl (22.DL) = % .34..3DLg\n", sbj0dl(22.DL)); PRINTF("sindl (22.DL) = % .34..3DLg\n", sindl(22.DL)); PRINTF("sqrtdl (22.DL) = % .34..3DLg\n", sqrtdl(22.DL)); PRINTF("tgammadl(22.DL) = % .34..3DLg\n", tgammadl(22.DL)); PRINTF("\n\n"); } void math_dll(void) { PRINTF("Demonstration of selected decimal 256-bit function values\n\n"); check_sizeof(); PRINTF("cbrtdll (22.DLL) = % .70..3DLLg\n", cbrtdll(22.DL)); PRINTF("elledll (0.2DLL) = % .70..3DLLg\n", elledll(0.2DL)); PRINTF("erfcdll (22.DLL) = % .70..3DLLg\n", erfcdll(22.DL)); PRINTF("pgammadll(10, 22.DLL) = % .70..3DLLg\n", pgammadll(10, 22.DL)); PRINTF("psidll (22.0F) = % .70..3DLLg\n", psidll(22.DL)); PRINTF("sbj0dll (22.DLL) = % .70..3DLLg\n", sbj0dll(22.DL)); PRINTF("sindll (22.DLL) = % .70..3DLLg\n", sindll(22.DL)); PRINTF("sqrtdll (22.DLL) = % .70..3DLLg\n", sqrtdll(22.DL)); PRINTF("tgammadll(22.DLL) = % .70..3DLLg\n", tgammadll(22.DL)); PRINTF("\n\n"); } void math_hp(void) { PRINTF("Expected values (from 200D symbolic-algebra evaluation)\n\n"); PRINTF("cbrtdll (22.DLL) = 2.802_039_330_655_387_120_665_677_385_665_894_017_585_798_218_769_268_316_979_783_733_783_75\n"); PRINTF("elledll (0.2DLL) = 1.554_968_546_242_529_283_474_427_007_626_648_437_452_982_275_568_916_084_827_105_580_383_232\n"); PRINTF("erfcdll (22.DLL) = 1.621_905_860_933_472_513_052_034_647_026_123_265_177_675_596_121_851_615_118_740_214_899_267e-212\n"); PRINTF("pgammadll(10, 22.DLL) = -1.702_523_439_631_811_782_184_094_486_897_304_774_841_852_577_408_045_311_669_762_286_963_616e-08\n"); PRINTF("psidll (22.0F) = 3.068_143_039_861_196_669_924_876_026_445_032_981_842_169_957_058_100_049_372_679_705_171_979\n"); PRINTF("sbj0dll (22.DLL) = -0.000_402_332_240_472_903_450_985_920_764_353_287_839_240_418_361_424_207_565_560_492_513_549_525_1\n"); PRINTF("sindll (22.DLL) = -0.008_851_309_290_403_875_921_690_256_815_772_332_463_289_203_951_332_566_442_330_835_298_089_552\n"); PRINTF("sqrtdll (22.DLL) = 4.690_415_759_823_429_554_565_630_113_544_466_280_588_228_353_411_737_153_605_701_891_017_025\n"); PRINTF("tgammadll (22.DLL) = 51_090_942_171_709_440_000\n"); PRINTF("\n\n"); } void normalize_dl(void) { PRINTF("Demonstration of normalization in decimal arithmetic\n\n"); PRINTF("normalizedl(+0.00100DL) = %s\n", ntosdl(normalizedl(+0.00100DL))); PRINTF("normalizedl(+1.00DL) = %s\n", ntosdl(normalizedl(+1.00DL))); PRINTF("normalizedl(+100.DL) = %s\n", ntosdl(normalizedl(+100.DL))); PRINTF("normalizedl(+100.00DL) = %s\n", ntosdl(normalizedl(+100.00DL))); PRINTF("normalizedl(+qnandl(\"0x1234\")) = %s\n", ntosdl(normalizedl(+qnandl("0x1234")))); PRINTF("normalizedl(-qnandl(\"0x1234\")) = %s\n", ntosdl(normalizedl(-qnandl("0x1234")))); PRINTF("normalizedl(+inftydl()) = %s\n", ntosdl(normalizedl(+inftydl()))); PRINTF("normalizedl(-inftydl()) = %s\n", ntosdl(normalizedl(-inftydl()))); PRINTF("\n\n"); } void quantize_dl(void) { PRINTF("Demonstration of quantization in decimal arithmetic\n\n"); PRINTF("quantizedl(+1.DL, +1.00DL) = %s\n", ntosdl(quantizedl(+1.DL, +1.00DL))); PRINTF("quantizedl(+100.DL, +1.00DL) = %s\n", ntosdl(quantizedl(+100.DL, +1.00DL))); PRINTF("quantizedl(+0.125DL, +1.00DL) = %s\n", ntosdl(quantizedl(+0.125DL, +1.00DL))); PRINTF("quantizedl(+0.135DL, +1.00DL) = %s\n", ntosdl(quantizedl(+0.135DL, +1.00DL))); PRINTF("quantizedl(+0.145DL, +1.00DL) = %s\n", ntosdl(quantizedl(+0.145DL, +1.00DL))); PRINTF("quantizedl(+qnandl(\"0x1234\"), +1.00DL) = %s\n", ntosdl(quantizedl(+qnandl("0x1234"), +1.00DL))); PRINTF("quantizedl(+100.DL, +qnandl(\"0x1234\")) = %s\n", ntosdl(quantizedl(+100.DL, +qnandl("0x1234")))); PRINTF("quantizedl(+qnandl(\"0x1234\"), +qnandl(\"0x5678\")) = %s\n", ntosdl(quantizedl(+qnandl("0x1234"), +qnandl("0x5678")))); PRINTF("quantizedl(+inftydl(), -inftydl()) = %s\n", ntosdl(quantizedl(+inftydl(), -inftydl()))); PRINTF("quantizedl(-inftydl(), +inftydl()) = %s\n", ntosdl(quantizedl(-inftydl(), +inftydl()))); PRINTF("quantizedl(+100.00DL, -inftydl()) = %s\n", ntosdl(quantizedl(+100.00DL, -inftydl()))); PRINTF("quantizedl(-inftydl(), +100.00DL) = %s\n", ntosdl(quantizedl(-inftydl(), +100.00DL))); PRINTF("quantizedl(+1234567890123456.DL, +1.DL) = %s\n", ntosdl(quantizedl(+1234567890123456.DL, +1.DL))); PRINTF("quantizedl(+1234567890123456.DL, +1.0DL) = %s\n", ntosdl(quantizedl(+1234567890123456.DL, +1.0DL))); PRINTF("\n"); PRINTF("samequantumdl(1.DL, 0.2DL) = %d\n", samequantumdl(1.DL, 0.2DL)); PRINTF("samequantumdl(1.DL, 2.DL) = %d\n", samequantumdl(1.DL, 2.DL)); PRINTF("samequantumdl(1.DL, 2.0DL) = %d\n", samequantumdl(1.DL, 2.0DL)); PRINTF("samequantumdl(1.DL, 2.00DL) = %d\n", samequantumdl(1.DL, 2.00DL)); PRINTF("samequantumdl(1.DL, 2.000DL) = %d\n", samequantumdl(1.DL, 2.000DL)); PRINTF("\n"); PRINTF("samequantumdl(+1.00DD, +9.99DD) = %d\n", samequantumdl(+1.00DD, +9.99DD)); PRINTF("samequantumdl(+1.00DD, +9999.99DD) = %d\n", samequantumdl(+1.00DD, +9999.99DD)); PRINTF("samequantumdl(+1.DD, +1.00DD) = %d\n", samequantumdl(+1.DD, +1.00DD)); PRINTF("samequantumdl(+100.DD, +1.00DD) = %d\n", samequantumdl(+100.DD, +1.00DD)); PRINTF("samequantumdl(+qnandl(\"0x1234\"), +1.00DD) = %d\n", samequantumdl(+qnandl("0x1234"), +1.00DD)); PRINTF("samequantumdl(+100.DD, +qnandl(\"0x1234\")) = %d\n", samequantumdl(+100.DD, +qnandl("0x1234"))); PRINTF("samequantumdl(+qnandl(\"0x1234\"), +qnandl(\"0x5678\")) = %d\n", samequantumdl(+qnandl("0x1234"), +qnandl("0x5678"))); PRINTF("samequantumdl(+inftydl(), -inftydl()) = %d\n", samequantumdl(+inftydl(), -inftydl())); PRINTF("samequantumdl(-inftydl(), +inftydl()) = %d\n", samequantumdl(-inftydl(), +inftydl())); PRINTF("samequantumdl(+100.00DD, -inftydl()) = %d\n", samequantumdl(+100.00DD, -inftydl())); PRINTF("samequantumdl(-inftydl(), +100.00DD) = %d\n", samequantumdl(-inftydl(), +100.00DD)); PRINTF("\n\n"); } void sales_dl(void) { static const decimal_long_double price_quantum = 0.01DL; static const volatile decimal_long_double item_cost = 0.70DL; static const volatile decimal_long_double sales_tax_rate = 0.05DL; volatile decimal_long_double sales_tax, total; sales_tax = item_cost * sales_tax_rate;; total = item_cost + sales_tax; PRINTF("Correct sales tax computation in decimal arithmetic\n\n"); PRINTF("sales_tax_rate = %8.2DLf (printed)", sales_tax_rate); PRINTF(" = %s (stored)\n", ntosdl(sales_tax_rate)); PRINTF("item_cost = %8.2DLf (printed)", item_cost); PRINTF(" = %s (stored)", ntosdl(item_cost)); PRINTF(" = %s (quantized)\n", ntosdl(quantizedl(item_cost, price_quantum))); PRINTF("sales_tax = %8.2DLf (printed)", sales_tax); PRINTF(" = %s (computed)", ntosdl(sales_tax)); PRINTF(" = %s (quantized)\n", ntosdl(quantizedl(sales_tax, price_quantum))); PRINTF("total = %8.2DLf (printed)", total); PRINTF(" = %s (computed)", ntosdl(total)); PRINTF(" = %s (quantized)\n", ntosdl(quantizedl(total, price_quantum))); PRINTF("\n\n"); } int main(void) { limits_df(); limits_dd(); limits_dl(); limits_dll(); eps_df(); eps_dd(); eps_dl(); eps_dll(); math_df(); math_dd(); math_dl(); math_dll(); math_hp(); sales_dl(); normalize_dl(); quantize_dl(); return (EXIT_SUCCESS); }
You can download a file with this test output here.
Decimal 32-bit floating-point limits DEC_FLT_DEN = 1e-101 DEC_FLT_EPSILON = 1e-06 DEC_FLT_MANT_DIG = 7 DEC_FLT_MAX = 9.999_999e+96 DEC_FLT_MAX_EXP = 96 DEC_FLT_MIN = 1e-95 DEC_FLT_MIN_EXP = -95 Decimal 64-bit floating-point limits DEC_DBL_DEN = 1e-398 DEC_DBL_EPSILON = 1e-15 DEC_DBL_MANT_DIG = 16 DEC_DBL_MAX = 9.999_999_999_999_999e+384 DEC_DBL_MAX_EXP = 384 DEC_DBL_MIN = 1e-383 DEC_DBL_MIN_EXP = -383 Decimal 128-bit floating-point limits DEC_LDBL_DEN = 1e-6_176 DEC_LDBL_EPSILON = 1e-33 DEC_LDBL_MANT_DIG = 34 DEC_LDBL_MAX = 9.999_999_999_999_999_999_999_999_999_999_999e+6_144 DEC_LDBL_MAX_EXP = 6144 DEC_LDBL_MIN = 1e-6_143 DEC_LDBL_MIN_EXP = -6143 Decimal 256-bit floating-point limits Warning: decimal_long_long_double and decimal_long_double are identical 16-byte types on this platform DEC_LLDBL_DEN = 1e-6_176 DEC_LLDBL_EPSILON = 1e-33 DEC_LLDBL_MANT_DIG = 34 DEC_LLDBL_MAX = 9.999_999_999_999_999_999_999_999_999_999_999e+6_144 DEC_LLDBL_MAX_EXP = 6144 DEC_LLDBL_MIN = 1e-6_143 DEC_LLDBL_MIN_EXP = -6143 Demonstration of 32-bit machine-epsilon computation Computed decimal_float machine epsilon = 1e-06 Demonstration of 64-bit machine-epsilon computation Computed decimal_double machine epsilon = 1e-15 Demonstration of 128-bit machine-epsilon computation Computed decimal_long_double machine epsilon = 1e-33 Demonstration of 256-bit machine-epsilon computation Warning: decimal_long_long_double and decimal_long_double are identical 16-byte types on this platform Computed decimal_long_long_double machine epsilon = 1e-33 Demonstration of selected decimal 32-bit function values cbrtdf (22.DF) = 2.802_039 elledf (0.2DF) = 1.554_969 erfcdf (22.DF) = 0 pgammadf(10, 22.DF) = -1.702_523e-08 psidf (22.DF) = 3.068_143 sbj0df (22.DF) = -0.000_402_3 sindf (22.DF) = -0.008_851_3 sqrtdf (22.DF) = 4.690_416 tgammadf(22.DF) = 5.109_094e+19 Demonstration of selected decimal 64-bit function values cbrtd (22.DD) = 2.802_039_330_655_387 elled (0.2DD) = 1.554_968_546_242_53 erfcd (22.DD) = 1.621_905_860_933_472e-212 pgammad (10, 22.DD) = -1.702_523_439_631_812e-08 psid (22.0F) = 3.068_143_039_861_197 sbj0d (22.DD) = -0.000_402_332_240_472_9 sind (22.DD) = -0.008_851_309_290_403_9 sqrtd (22.DD) = 4.690_415_759_823_43 tgammad (22.DD) = 5.109_094_217_170_944e+19 Demonstration of selected decimal 128-bit function values cbrtdl (22.DL) = 2.802_039_330_655_387_120_665_677_385_665_894 elledl (0.2DL) = 1.554_968_546_242_529_283_474_427_007_626_648 erfcdl (22.DL) = 1.621_905_860_933_472_513_052_034_647_026_123e-212 pgammadl(10, 22.DL) = -1.702_523_439_631_811_782_184_094_486_897_306e-08 psidl (22.0F) = 3.068_143_039_861_196_669_924_876_026_445_033 sbj0dl (22.DL) = -0.000_402_332_240_472_903_450_985_920_764_353_3 sindl (22.DL) = -0.008_851_309_290_403_875_921_690_256_815_772_3 sqrtdl (22.DL) = 4.690_415_759_823_429_554_565_630_113_544_466 tgammadl(22.DL) = 51_090_942_171_709_440_000 Demonstration of selected decimal 256-bit function values Warning: decimal_long_long_double and decimal_long_double are identical 16-byte types on this platform cbrtdll (22.DLL) = 2.802_039_330_655_387_120_665_677_385_665_894 elledll (0.2DLL) = 1.554_968_546_242_529_283_474_427_007_626_648 erfcdll (22.DLL) = 1.621_905_860_933_472_513_052_034_647_026_123e-212 pgammadll(10, 22.DLL) = -1.702_523_439_631_811_782_184_094_486_897_306e-08 psidll (22.0F) = 3.068_143_039_861_196_669_924_876_026_445_033 sbj0dll (22.DLL) = -0.000_402_332_240_472_903_450_985_920_764_353_3 sindll (22.DLL) = -0.008_851_309_290_403_875_921_690_256_815_772_3 sqrtdll (22.DLL) = 4.690_415_759_823_429_554_565_630_113_544_466 tgammadll(22.DLL) = 51_090_942_171_709_440_000 Expected values (from 200D symbolic-algebra evaluation) cbrtdll (22.DLL) = 2.802_039_330_655_387_120_665_677_385_665_894_017_585_798_218_769_268_316_979_783_733_783_75 elledll (0.2DLL) = 1.554_968_546_242_529_283_474_427_007_626_648_437_452_982_275_568_916_084_827_105_580_383_232 erfcdll (22.DLL) = 1.621_905_860_933_472_513_052_034_647_026_123_265_177_675_596_121_851_615_118_740_214_899_267e-212 pgammadll(10, 22.DLL) = -1.702_523_439_631_811_782_184_094_486_897_304_774_841_852_577_408_045_311_669_762_286_963_616e-08 psidll (22.0F) = 3.068_143_039_861_196_669_924_876_026_445_032_981_842_169_957_058_100_049_372_679_705_171_979 sbj0dll (22.DLL) = -0.000_402_332_240_472_903_450_985_920_764_353_287_839_240_418_361_424_207_565_560_492_513_549_525_1 sindll (22.DLL) = -0.008_851_309_290_403_875_921_690_256_815_772_332_463_289_203_951_332_566_442_330_835_298_089_552 sqrtdll (22.DLL) = 4.690_415_759_823_429_554_565_630_113_544_466_280_588_228_353_411_737_153_605_701_891_017_025 tgammadll (22.DLL) = 51_090_942_171_709_440_000 Correct sales tax computation in decimal arithmetic sales_tax_rate = 0.05 (printed) = +0.05 (stored) item_cost = 0.70 (printed) = +0.70 (stored) = +0.70 (quantized) sales_tax = 0.04 (printed) = +0.0350 (computed) = +0.04 (quantized) total = 0.74 (printed) = +0.7350 (computed) = +0.74 (quantized) Demonstration of normalization in decimal arithmetic normalizedl(+0.00100DL) = +0.001 normalizedl(+1.00DL) = +1 normalizedl(+100.DL) = +1E+2 normalizedl(+100.00DL) = +1E+2 normalizedl(+qnandl("0x1234")) = +NaN4434 normalizedl(-qnandl("0x1234")) = -NaN4434 normalizedl(+inftydl()) = +Infinity normalizedl(-inftydl()) = -Infinity Demonstration of quantization in decimal arithmetic quantizedl(+1.DL, +1.00DL) = +1.00 quantizedl(+100.DL, +1.00DL) = +100.00 quantizedl(+0.125DL, +1.00DL) = +0.12 quantizedl(+0.135DL, +1.00DL) = +0.14 quantizedl(+0.145DL, +1.00DL) = +0.14 quantizedl(+qnandl("0x1234"), +1.00DL) = +NaN4434 quantizedl(+100.DL, +qnandl("0x1234")) = +NaN4434 quantizedl(+qnandl("0x1234"), +qnandl("0x5678")) = +NaN4434 quantizedl(+inftydl(), -inftydl()) = +Infinity quantizedl(-inftydl(), +inftydl()) = -Infinity quantizedl(+100.00DL, -inftydl()) = +NaN quantizedl(-inftydl(), +100.00DL) = +NaN quantizedl(+1234567890123456.DL, +1.DL) = +1234567890123456 quantizedl(+1234567890123456.DL, +1.0DL) = +1234567890123456.0 samequantumdl(1.DL, 0.2DL) = 0 samequantumdl(1.DL, 2.DL) = 1 samequantumdl(1.DL, 2.0DL) = 0 samequantumdl(1.DL, 2.00DL) = 0 samequantumdl(1.DL, 2.000DL) = 0 samequantumdl(+1.00DD, +9.99DD) = 1 samequantumdl(+1.00DD, +9999.99DD) = 1 samequantumdl(+1.DD, +1.00DD) = 0 samequantumdl(+100.DD, +1.00DD) = 0 samequantumdl(+qnandl("0x1234"), +1.00DD) = 0 samequantumdl(+100.DD, +qnandl("0x1234")) = 0 samequantumdl(+qnandl("0x1234"), +qnandl("0x5678")) = 1 samequantumdl(+inftydl(), -inftydl()) = 1 samequantumdl(-inftydl(), +inftydl()) = 1 samequantumdl(+100.00DD, -inftydl()) = 0 samequantumdl(-inftydl(), +100.00DD) = 0